PITHAPUR RAJAH'S GOVERNMENT COLLEGE (A), KAKINADA

DEPARTMENT OF MATHEMATICS

Laveti. Surya Bala Ratna Bhanu _{M.Sc ,B.Ed}

Lecturer in Mathematics

Phone:7330946793,9704768781.

Email: bhanuasdgdc@gmail.com

1. If α, β, γ are linearly independent vectors of V(R), then show that $\alpha + \beta, \beta + \gamma$, $\gamma + \alpha$ are also linearly independent.

Sol: Consider the scalars a, b, $c \in R$ such that

$$a(\alpha + \beta) + b(\beta + \gamma) + c(\gamma + \alpha) = 0$$

$$\Rightarrow$$
 $(a + c)\alpha + (a + b)\beta + (b + c)\gamma = 0$

Given that α , β , γ are also linearly independent. This implies that

$$a + c = 0$$
, $a + b = 0$, $b + c = 0$.

By solving the above equations, we get a=0, b=0, c=0 and therefore the given vectors $\alpha+\beta$, $\beta+\gamma$, $\gamma+\alpha$ are also linearly independent.

Theorem: Let V(F) be a vector space and $S = \{\alpha_1, \alpha_2, ..., \alpha_n\}$ is a finite subset of non-zero vectors of V(F). Then S is linearly dependent if and only if some vector $\alpha_k \in S$, $2 \le k \le n$, can be expressed as a linear combination of its preceding vectors.

Proof: Let $S = \{\alpha_1, \alpha_2, ..., \alpha_n\}$ be a finite subset of non-zero vectors of the vector space V(F).

Case 1: Let S be linearly dependent. Then there exist scalars $a_1, a_2, ..., a_n \in F$, not all zeros such that

$$a_1\alpha_1 + a_2\alpha_2 + a_3\alpha_3 + \dots + a_n\alpha_n = \overline{0} - - - - (1)$$

Let k be the smallest suffix such that $a_k \neq 0$.

From (1), $a_1\alpha_1 + a_2\alpha_2 + a_3\alpha_3 + \dots + a_k\alpha_k + 0\alpha_{k+1} + 0\alpha_{k+2} + \dots + 0\alpha_n = \overline{0}$.ss

Suppose k=1, then $a_1\alpha_1=\overline{0}$. But $\alpha_1\neq\overline{0}$, then $a_1=0$. This is contradiction to a_i 's are not all zeros and therefore $2\leq k\leq n$.

Again from (1),
$$a_k \alpha_k = -a_1 \alpha_1 - a_2 \alpha_2 - \dots - a_{k-1} \alpha_{k-1}$$

$$\Rightarrow \alpha_k = (-a_k^{-1} a_1) \alpha_1 + (-a_k^{-1} a_2) \alpha_2 + \dots + (-a_k^{-1} a_{k-1}) \alpha_{k-1}$$

This shows that α_k can be written as the linear combination of its preceding vectors, for $2 \le k \le n$.

Case 2: Let α_k can be written as the linear combination of its preceding vectors, for $2 \le k \le n$, then

$$\alpha_k = b_1 \alpha_1 + b_2 \alpha_2 + \dots + b_{k-1} \alpha_{k-1}$$
, where $b_1, b_2, \dots, b_{k-1} \in F$.

$$\Rightarrow b_1 \alpha_1 + b_2 \alpha_2 + \dots + b_{k-1} \alpha_{k-1} + (-1) \alpha_k = \overline{0}, \text{ here } -1 \neq 0.$$

Therefore the set of vectors $\{\alpha_1, \alpha_2, ..., \alpha_k\}$ are linearly dependent and hence the set of vectors $\{\alpha_1, \alpha_2, ..., \alpha_n\}$ are linearly dependent.

THANK YOU